224 research outputs found

    Capability assessment for application of clay mixture as barrier material for irradiated zirconium alloy structure elements long-term processing for storage during decommissioning of uranium-graphite nuclear reactors

    Get PDF
    The radionuclide composition and the activity level of the irradiated zirconium alloy E110, the radionuclide immobilization strength and the retention properties of the mixed clay barrier material with respect to the radionuclides identified in the alloy were investigated to perform the safety assessment of handling structural units of zirconium alloy used for the technological channels in uranium-graphite reactors. The irradiated zirconium alloy waste contained the following activation products:{93m}Nb and the long-lived {94}Nb, {93}Zr radionuclides. Radionuclides of {60}Co, {137}Cs, {90}Sr, and actinides were also present in the alloy. In the course of the runs no leaching of niobium and zirconium isotopes from the E110 alloy was detected. Leach rates were observed merely for {60}Co and {137}Cs present in the deposits formed on the internal surface of technological channels. The radionuclides present were effectively adsorbed by the barrier material. To ensure the localization of radionuclides in case of the radionuclide migration from the irradiated zirconium alloy into the barrier material, the sorption properties were determined of the barrier material used for creating the long-term storage point for the graphite stack from uranium-graphite reactors

    Chemoenzymatic Probes for Detecting and Imaging Fucose-α(1-2)-galactose Glycan Biomarkers

    Get PDF
    The disaccharide motif fucose-α(1-2)-galactose (Fucα(1-2)Gal) is involved in many important physiological processes, such as learning and memory, inflammation, asthma, and tumorigenesis. However, the size and structural complexity of Fucα(1-2)Gal-containing glycans have posed a significant challenge to their detection. We report a new chemoenzymatic strategy for the rapid, sensitive detection of Fucα(1-2)Gal glycans. We demonstrate that the approach is highly selective for the Fucα(1-2)Gal motif, detects a variety of complex glycans and glycoproteins, and can be used to profile the relative abundance of the motif on live cells, discriminating malignant from normal cells. This approach represents a new potential strategy for biomarker detection and expands the technologies available for understanding the roles of this important class of carbohydrates in physiology and disease

    A Decolonial Critique of the Racialized “Localwashing” of Extraction in Central Africa

    Get PDF
    Responding to calls for increased attention to actions and reactions “from above” within the extractive industry, we offer a decolonial critique of the ways in which corporate entities and multinational institutions propagate racialized rhetoric of “local” suffering, “local” consultation, and “local” fault for failure in extractive zones. Such rhetoric functions to legitimize extractive intervention within a set of practices that we call localwashing. Drawing from a decade of research on and along the Chad-Cameroon Oil Pipeline, we show how multi-scalar actors converged to assert knowledge of, responsibility for, and collaborations with “local” people within a racialized politics of scale. These corporate representations of the racialized “local” are coded through long-standing colonial tropes. We identify three interrelated and overlapping flexian elite rhetoric(s) and practices of racialized localwashing: (a) anguishing, (b) arrogating, and (c) admonishing. These elite representations of a racialized “local” reveal diversionary efforts “from above” to manage public opinion, displace blame for project failures, and domesticate dissent in a context of persistent scrutiny and criticism from international and regional advocates and activists

    Combined use of preoperative 18F FDG-PET imaging and intraoperative gamma probe detection for accurate assessment of tumor recurrence in patients with colorectal cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to combine intraoperative gamma probe (GP) detection with preoperative fluorine 18-fluoro-2-deoxy-glucose positron emission tomography (<sup>18</sup>F FDG-PET) imaging in order to improve detection of tumor recurrence in colorectal cancer (CRC) patients.</p> <p>Methods</p> <p>Twenty-one patients (12 females, 9 males) with a mean age of 54 years (range 31–78) were enrolled. Patients were suspected to have recurrent CRC by elevated CEA (n = 11), suspicious CT findings (n = 1), and clinically suspicious findings (n = 9). Preoperative FDG-PET scan and intraoperative GP study were performed in all patients. Mean time interval between preoperative FDG-PET scan and surgery was 16 days (range 1–41 days) in 19 patients. For intraoperative GP studies, 19 patients were injected with a dose of 10–15 mCi <sup>18</sup>F FDG at approximately 30 minutes before the planned surgery time. In two patients, the intraoperative GP study was performed immediately after preoperative FDG-PET scan.</p> <p>Results</p> <p>Preoperative FDG-PET and intraoperative GP detected 48 and 45 lesions, respectively. A total of 50 presumed site of recurrent disease from 20 patients were resected. Thirty-seven of 50 presumed sites of recurrent disease were histological-proven tumor positive and 13 of 50 presumed sites of recurrent disease were histological-proven tumor negative. When correlated with final histopathology, the number of true positive lesions and false positive lesions by preoperative FDG-PET and intraoperative GP were 31/9 and 35/8, respectively. Both preoperative FDG-PET and intraoperative GP were true positive in 29 lesions. Intraoperative GP detected additional small lesions in the omentum and pelvis which were not seen on preoperative FDG-PET scan. FDG-PET scan demonstrated additional liver metastases which were not detected by intraoperative GP. Preoperative FDG-PET detected distant metastasis in the lung in one patient. The estimated radiation dose received by a surgeon during a single 18F FDG GP surgery was below the occupational limit.</p> <p>Conclusion</p> <p>The combined use of preoperative FDG-PET and intraoperative GP is potentially helpful to the surgeon as a roadmap for accurately locating and determining the extent of tumor recurrence in patients with CRC. While intraoperative GP appears to be more sensitive in detecting the extent of abdominal and pelvic recurrence, preoperative FDG-PET appears to be more sensitive in detecting liver metastases. FDG-PET is also a valuable method in detecting distant metastases.</p

    Combined approach of perioperative 18F-FDG PET/CT imaging and intraoperative 18F-FDG handheld gamma probe detection for tumor localization and verification of complete tumor resection in breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><sup>18</sup>F-fluorodeoxyglucose (<sup>18</sup>F-FDG) positron emission tomography/computed tomography (PET/CT) has become an established method for detecting hypermetabolic sites of known and occult disease and is widely used in oncology surgical planning. Intraoperatively, it is often difficult to localize tumors and verify complete resection of tumors that have been previously detected on diagnostic PET/CT at the time of the original evaluation of the cancer patient. Therefore, we propose an innovative approach for intraoperative tumor localization and verification of complete tumor resection utilizing <sup>18</sup>F-FDG for perioperative PET/CT imaging and intraoperative gamma probe detection.</p> <p>Methods</p> <p>Two breast cancer patients were evaluated. <sup>18</sup>F-FDG was administered and PET/CT was acquired immediately prior to surgery. Intraoperatively, tumors were localized and resected with the assistance of a handheld gamma probe. Resected tumors were scanned with specimen PET/CT prior to pathologic processing. Shortly after the surgical procedure, patients were re-imaged with PET/CT utilizing the same preoperatively administered <sup>18</sup>F-FDG dose.</p> <p>Results</p> <p>One patient had primary carcinoma of breast and a metastatic axillary lymph node. The second patient had a solitary metastatic liver lesion. In both cases, preoperative PET/CT verified these findings and demonstrated no additional suspicious hypermetabolic lesions. Furthermore, intraoperative gamma probe detection, specimen PET/CT, and postoperative PET/CT verified complete resection of the hypermetabolic lesions.</p> <p>Conclusion</p> <p>Immediate preoperative and postoperative PET/CT imaging, utilizing the same <sup>18</sup>F-FDG injection dose, is feasible and image quality is acceptable. Such perioperative PET/CT imaging, along with intraoperative gamma probe detection and specimen PET/CT, can be used to verify complete tumor resection. This innovative approach demonstrates promise for assisting the oncologic surgeon in localizing and verifying resection of <sup>18</sup>F-FDG positive tumors and may ultimately positively impact upon long-term patient outcomes.</p

    The enhancement of stress-related memory by glucocorticoids depends on synapsin-Ia/Ib

    Get PDF
    The activation of glucocorticoid receptors (GR) by glucocorticoids increases stress-related memory through the activation of the MAPK signaling pathway and the downstream transcription factor Egr-1. Here, using converging in vitro and in vivo approaches, respectively, GR-expressing cell lines, culture of hippocampal neurons, and GR genetically modified mice (GRNesCre), we identified synapsin-Ia/Ib as one of the effectors of the glucocorticoid signaling cascade. Stress and glucocorticoid-induced activation of the GR modulate synapsin-Ia/Ib through two complementary mechanisms. First, glucocorticoids driving Egr-1 expression increase the expression of synapsin-Ia/Ib, and second, glucocorticoids driving MAPK activation increase its phosphorylation. Finally, we showed that blocking fucosylation of synapsin-Ia/Ib in the hippocampus inhibits its expression and prevents the glucocorticoid-mediated increase in stress-related memory. In conclusion, our data provide a complete molecular pathway (GR/Egr-1/MAPK/Syn-Ia/Ib) through which stress and glucocorticoids enhance the memory of stress-related events and highlight the function of synapsin-Ia/Ib as molecular effector of the behavioral effects of stress
    corecore